Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices

نویسندگان

  • Minwu Yao
  • Gareth H. McKinley
چکیده

Large extensional deformations of viscoelastic fluid columns in filament stretching rheometers are studied through numerical simulations up to Hencky strains of greater than o=4. The time-dependent axisymmetric calculations incorporate the effects of viscoelasticity, surface tension, fluid inertia, plus a deformable free surface and provide quantitative descriptions of the evolution in the filament profile, the kinematics in the liquid column and the resulting dynamic evolution in the viscous and elastic contributions to the total stress. In addition to investigating the variation in the apparent Trouton ratio expected in experimental measurements using this new type of extensional rheometer, we also investigate the generic differences between the response of Newtonian and viscoelastic fluid filaments described by the Oldroyd-B model. For small strains, the fluid deformation is governed by the Newtonian solvent contribution to the stress and the filament evolution is very similar in both the Newtonian and viscoelastic cases. However, in the latter case at large strains and moderate Deborah numbers, elastic stresses dominate leading to strain-hardening in the axial mid-regions of the column and subsequent drainage of the quasi-static liquid reservoir that forms near both end-plates. These observations are in good qualitative agreement with experimental observations. For small initial aspect ratios and low strains, the non-homogeneous deformation predicted by numerical simulations is well described by a lubrication theory solution. At larger strains, the initial flow non-homogeneity leads to the growth of viscoelastic stress boundary layers near the free surface which can significantly affect the transient Trouton ratio measured in the device. Exploratory design calculations suggest that mechanical methods for modifying the boundary conditions at the rigid end-plates can reduce this non-homogeneity and lead to almost ideal uniaxial elongational flow kinematics. © 1998 Elsevier Science B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Weakly Strain-hardening Fluids in Filament Stretching Devices

We investigate the transient viscoelastic response of weakly strain-hardening fluids to imposed elongational deformation in filament stretching devices. We combine timedependent finite-element simulations with quantitative experimental measurements on a rheologically well-characterized test fluid to investigate how well the device reproduces the ideal transient uniaxial extensional viscosity pr...

متن کامل

Filament-stretching Rheometry of Complex Fluids

■ Abstract Filament-stretching rheometers are devices for measuring the extensional viscosity of moderately viscous non-Newtonian fluids such as polymer solutions. In these devices, a cylindrical liquid bridge is initially formed between two circular end-plates. The plates are then moved apart in a prescribed manner such that the fluid sample is subjected to a strong extensional deformation. As...

متن کامل

Extensional deformation, stress relaxation and necking failure of viscoelastic filaments

We investigate the transient viscoelastic behavior of weakly strain-hardening fluids in filament stretching devices during uniaxial elongation and following the cessation of stretching. The numerical results are compared with experimental observations on a concentrated shear-thinning polystyrene solution which is well characterized by a multi-mode Giesekus model. The finite element computations...

متن کامل

Iterated stretching of viscoelastic jets

We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r0 , shear viscosity n, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius @Ca(12S)/We#r0 ...

متن کامل

Exact solution for the extensional flow of a viscoelastic filament

We solve the free boundary problem for the dynamics of a cylindrical, axisymmetric viscoelastic filament stretching in a gravity-driven extensional flow for the Upper Convected Maxwell and Oldroyd-B constitutive models. Assuming the axial stress in the filament has a spatial dependence provides the simplest coupling of viscoelastic effects to the motion of the filament, and yields a closed syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998